254 research outputs found

    Metabolic underpinnings of the paradoxical net phosphocreatine resynthesis in contracting rat gastrocnemius muscle

    Get PDF
    AbstractNet phosphocreatine (PCr) resynthesis during muscle contraction is a paradoxical phenomenon because it occurs under conditions of high energy demand. The metabolic underpinnings of this phenomenon were analyzed non-invasively using 31P-magnetic resonance spectroscopy in rat gastrocnemius muscle (n=11) electrically stimulated (7.6 Hz, 6 min duration) in situ under ischemic and normoxic conditions. During ischemic stimulation, [PCr] initially fell to a steady state (9±5% of resting concentration) which was maintained for the last 5 min of stimulation, whereas isometric force production decreased to a non-measurable level beyond 3 min. Throughout normoxic stimulation, [PCr] and force production declined to a steady state after respectively 1 min (5±3% of resting concentration) and 3.25 min (21±8% of initial value) of stimulation. Contrary to the observations under ischemia, a paradoxical net PCr resynthesis was recorded during the last 2 min of normoxic stimulation and was not accompanied by any improvement in force production. These results demonstrate that the paradoxical net PCr resynthesis recorded in contracting muscle relies exclusively on oxidative energy production and could occur in inactivated fibers, similarly to PCr resynthesis during post-exercise recovery

    White matter maturation of normal human fetal brain. An in vivo diffusion tensor tractography study

    Get PDF
    We demonstrate for the first time the ability to determine in vivo and in utero the transitions between the main stages of white matter (WM) maturation in normal human fetuses using magnetic resonance diffusion tensor imaging (DTI) tractography. Biophysical characteristics of water motion are used as an indirect probe to evaluate progression of the tissue matrix organization in cortico-spinal tracts (CSTs), optic radiations (OR), and corpus callosum (CC) in 17 normal human fetuses explored between 23 and 38 weeks of gestation (GW) and selected strictly on minimal motion artifacts. Nonlinear polynomial (third order) curve fittings of normalized longitudinal and radial water diffusivities (Z-scores) as a function of age identify three different phases of maturation with specific dynamics for each WM bundle type. These phases may correspond to distinct cellular events such as axonal organization, myelination gliosis, and myelination, previously reported by other groups on post-mortem fetuses using immunostaining methods. According to the DTI parameter dynamics, we suggest that myelination (phase 3) appears early in the CSTs, followed by the OR and by the CC, respectively. DTI tractography provides access to a better understanding of fetal WM maturation

    Inflammatory Multiple-Sclerosis Plaques Generate Characteristic Metabolic Profiles in Cerebrospinal Fluid

    Get PDF
    International audienceBackgroundMultiple sclerosis (MS), an inflammatory disease of the central nervous system, manifests itself in numerous forms and stages. A number of brain metabolic alterations have been reported for MS patients vs. control subjects. However, metabolite profiles of cerebrospinal fluid (CSF) are not consistent among the published MS studies, most probably due to variations in the patient cohorts studied. We undertook the first investigation of highly homogeneous MS patient cohorts to determine characteristic effects of inflammatory MS plaques on the CSF metabolome, including only patients with clinically isolated syndrome (CIS) with or without inflammatory brain plaques, and controls.Methodology/Principal FindingsCSF obtained by lumbar puncture was analyzed by proton magnetic resonance spectroscopy. 27 metabolites were quantified. Differences between groups of control subjects (n = 10), CIS patients with (n = 21) and without (n = 12) inflammatory plaques were evaluated by univariate statistics and principal component analysis (PCA). Seven metabolites showed statistically significant inter-group differences (p<0.05). Interestingly, a significant increase in β-hydroxyisobutyrate (BHIB) was detected in CIS with vs. without active plaques, but not when comparing either CIS group with control subjects. Moreover, a significant correlation was found, for the first time, between CSF lactate concentration and the number of inflammatory MS brain plaques. In contrast, fructose concentrations were equally enhanced in CIS with or without active plaques. PCA based on all 27 metabolites yielded group-specific clusters.Conclusions/SignificanceCSF metabolic profiles suggest a close link between MS plaque activity in CIS patients on the one hand and organic-acid metabolism on the other. Our detection of increased BHIB levels points to a hitherto unsuspected role for this compound in MS with active plaques, and serves as a basis for further investigation. The metabolic effects described in our study are crucial elements in the explanation of biochemical mechanisms involved in specific MS manifestations

    Gender differences in response to cold pressor test assessed with velocity-encoded cardiovascular magnetic resonance of the coronary sinus

    Get PDF
    BACKGROUND: Gender-specific differences in cardiovascular risk are well known, and current evidence supports an existing role of endothelium in these differences. The purpose of this study was to assess non invasively coronary endothelial function in male and female young volunteers by myocardial blood flow (MBF) measurement using coronary sinus (CS) flow quantification by velocity encoded cine cardiovascular magnetic resonance (CMR) at rest and during cold pressor test (CPT). METHODS: Twenty-four healthy volunteers (12 men, 12 women) underwent CMR in a 3 Tesla MR imager. Coronary sinus flow was measured at rest and during CPT using non breath-hold velocity encoded phase contrast cine-CMR. Myocardial function and morphology were acquired using a cine steady-state free precession sequence. RESULTS: At baseline, mean MBF was 0.63 ± 0.23 mL·g⁻¹·min⁻¹ in men and 0.79 ± 0.21 mL·g⁻¹·min⁻¹ in women. During CPT, the rate pressure product in men significantly increased by 49 ± 36% (p \textless 0.0001) and in women by 52 ± 22% (p \textless 0.0001). MBF increased significantly in both men and women by 0.22 ± 0.19 mL·g⁻¹·min⁻¹ (p = 0.0022) and by 0.73 ± 0.43 mL·g⁻¹·min⁻¹ (p = 0.0001), respectively. The increase in MBF was significantly higher in women than in men (p = 0.0012). CONCLUSION: CMR coronary sinus flow quantification for measuring myocardial blood flow revealed a higher response of MBF to CPT in women than in men. This finding may reflect gender differences in endothelial-dependent vasodilatation in these young subjects. This non invasive rest/stress protocol may become helpful to study endothelial function in normal physiology and in physiopathology
    corecore